UNIDAD LERM	A DIVISION CIENCIAS BASICAS E INGENIE	CIENCIAS BASICAS E INGENIERIA			
NOMBRE DEL PL	AN LICENCIATURA EN INGENIERIA EN SISTEMAS MECA INDUSTRIALES	ATRONICOS			
CLAVE UNIDAD DE ENSEÑANZA-APRENDIZAJE LABORATORIO DE CONTROL		CRED.	3		
5111014			OBL.		
H.TEOR. 0.0	SERIACION	TRIM.			
H.PRAC. 3.0	5111018	ΥT			

OBJETIVO(S):

Al final de la UEA el alumnado será capaz de:

Diseñar, implementar y evaluar el desempeño de sistemas de control automático, continuos y discretos, basados en la identificación del proceso.

CONTENIDO SINTETICO:

- Práctica 1. Descripción del equipo del laboratorio.
- Práctica 2. Sistema de lazo abierto.
- Práctica 3. Sistema de lazo cerrado con variación de ganancia.
- Práctica 4. Control de posición.
- Práctica 5. Muestreadores y retenedores.
- Práctica 6. Convertidor analógico digital discreto e integrado.
- Práctica 7. Control de velocidad de motor de CD por modulación PWM.
- Práctica 8. Motores de pasos con control programado.

MODALIDADES DE CONDUCCION DEL PROCESO DE ENSEÑANZA-APRENDIZAJE:

- Al inicio del trimestre, el personal académico presentará al alumnado los objetivos, el programa y la bibliografia del curso.
- El personal académico expondrá los temas frente a grupo mediante la presentación de ejemplos y resolverá problemas y ejercicios para su comprensión, con la participación activa del alumnado.
- El alumnado participará planteando dudas e inquietudes sobre los temas; asimismo, resolverá problemas y ejercicios con la asesoria del personal académico.
- Se recomienda la programación de reuniones periódicas entre el personal académico de los diversos grupos de esta UEA a lo largo del trimestre, con el fin de homogeneizar y mejorar el proceso de enseñanza - aprendizaje, de forma tal que, decidan de manera colegiada las caracteristicas de las evaluaciones.
- Las horas prácticas consistirán en la resolución de ejercicios, problemas, y/o la realización de actividades sobre el contenido de la UEA.

UNIVERSIDAD AUTONOMA METROPOLITANA

ADECUACION
PRESENTADA AL GOLEGIO ACADEMICO
EN SU SESION NUM. 521

LA SECRETARIA DEL COLEGIO

LICENCIATURA	EN	INGENIERIA	EN	SISTEMAS	MECATRONICOS	2/	
INDUSTRIALES							

2

CLAVE **5111014**

NOMBRE DEL PLAN

LABORATORIO DE CONTROL

- Los contenidos podrán ser impartidos en cualquiera de las modalidades de operación establecidas en el Plan de Estudios.

MODALIDADES DE EVALUACION:

Al inicio del trimestre, el personal académico expondrá al alumnado los criterios y mecanismos de las evaluaciones, así como su programación.

Evaluación Global:

Se ponderarán las siguientes actividades a criterio del personal académico:

- Evaluaciones periódicas que consistirán en la resolución escrita de problemas, ejercicios o preguntas sobre la teoría. Serán al menos dos por trimestre y una que corresponda al proyecto integrador. Se sugiere que esta última, cuente de un 10% hasta un 30% de la calificación final, a juicio del personal académico.
- Evaluación terminal, que será de carácter obligatorio para aquellos alumnos o alumnas que reprueben alguna evaluación periódica. El alumno o alumna presentará la(s) parte(s) correspondiente(s) a la(s) evaluación(es) periódica(s) reprobada(s) o un examen que abarcará la totalidad del curso.

Evaluación de Recuperación:

Admite evaluación de recuperación. No requiere inscripción previa.

BIBLIOGRAFIA NECESARIA O RECOMENDABLE:

Bibliografía Necesaria:

1. Ogata, K. (2009). Modern Control Engineering (5a. ed.). EUA: Pearson / Prentice Hall.

Bibliografia Recomendable:

- 1. Chen, C-T. (2006). Analog and digital control system design: transfer-function, state-space, and algebraic methods. Nueva York: Oxford University Press.
- 2. Raven, F. H. (1995). Automatic control engineering: Nueva York: McGraw Hill.
- 3. Golnaraghi, F. & Kuo, B.C. (2009). Automatic control systems (9a. ed.). EUA: Wiley.
- 4. Dorf, Richard C. & Bishop, R. (2010). Modern control systems (12a. ed.) EUA: Pearson / Prentice Hall.
- 5. Houpis, C. H.; Sheldon, S. N.; & D'Azzo, J. (2003). Linear Control System Analysis and 'Design with MATLAB (5a. ed.). EUA: CRC Press.
- 6. https://bidi.uam.mx

