UNIDAD LERM	IA	DIVISION CIENCIAS BASICAS E INGENIER	RIA	1 /
NOMBRE DEL PI		ATURA EN INGENIERIA EN COMPUTACION Y UNICACIONES		0
CLAVE	2004 MARTIN CONTROL DOCAL BEAUTICE CO.	NSEÑANZA-APRENDIZAJE OR Y FLUIDOS	CRED.	7
5121009 ONDAS,		OR I FEBTEOS	TIPO	OBL.
H.TEOR. 2.5	SERIACION		RIM.	
H.PRAC. 2.0	5111001		I	

OBJETIVO(S):

Al final de la UEA el alumnado será capaz de:

Describir, analizar y resolver problemas relativos al comportamiento de fenómenos de los fluidos, el calor y las ondas.

CONTENIDO SINTETICO:

- 1. Mecánica de fluidos.
- 2. Movimiento periódico.
- 3. Ondas mecánicas.
- 4. Sonido.
- 5. Temperatura y calor.

MODALIDADES DE CONDUCCION DEL PROCESO DE ENSEÑANZA-APRENDIZAJE:

- Al inicio del trimestre, el personal académico presentará al alumnado los objetivos, el programa y la bibliografía del curso.
- El personal académico expondrá los temas frente a grupo mediante la presentación de ejemplos y resolverá problemas y ejercicios para su comprensión, con la participación activa del alumnado.
- El alumnado participará planteando dudas e inquietudes sobre los temas teóricos; asimismo, resolverán problemas y ejercicios con la asesoría del personal académico.
- El eje integrador se compondrá de actividades, de preferencia colaborativas, tales como: tareas, investigaciones, comprensión de lectura (espanol e inglés), debates, aplicación de cuestionarios, uso de software, entre otras, que articularán los diferentes contenidos de la UEA.
- Se recomienda la programación de reuniones periódicas entre el personal académico de los diversos grupos de esta UEA a lo largo del trimestre, con el fin de homogeneizar y mejorar el proceso de ensenanza aprendizaje, de forma tal que, decidan de manera colegiada las características de las evaluaciones.

UNIVERSIDAD AUTONOMA METROPOLITANA

ADECUACION
PRESENTADA AL COLEGIO ACADEMICO
EN SU SESIÓN NUM. 521

LA SECRETARIA DEL COLEGIO

NOMBRE	DEL	PLAN	LICENC:				EN	COMPUTACION Y	2/	1
CLAVE	512	1009	ONDAS,	CALOR	Y	FLUIDOS				

- Las horas prácticas consistirán en la resolución de ejercicios, problemas, y/o la realización de actividades sobre el contenido de la UEA.

- Los contenidos podrán ser impartidos en ambientes tradicional, abierto o virtual. Los contenidos podrán ser impartidos en cualquiera de las modalidades de operación establecidas en el Plan de Estudios.

MODALIDADES DE EVALUACION:

Al inicio del trimestre, el personal académico expondrá al alumnado los criterios y mecanismos de las evaluaciones, asi como su programación.

Evaluación Global:

Se ponderarán las siguientes actividades a criterio del personal académico:

- Evaluaciones periódicas que consistirán en la resolución escrita de problemas, ejercicios o preguntas sobre la teoria. Serán al menos dos por trimestre y una que corresponda al eje integrador. Se sugiere que esta última, cuente de un 10% hasta un 30% de la calificación final, a juicio del personal académico.
- Evaluación terminal, que será de carácter obligatorio para aquellos alumnos o alumnas que reprueben alguna evaluación periódica.
- El alumno o alumna presentará la(s) parte(s) correspondiente(s) a la(s) evaluación(es) periódica(s) reprobada(s) o un examen que abarcará la totalidad del curso.

Evaluación de Recuperación:

Admite evaluación de recuperación. No requiere inscripción previa.

BIBLIOGRAFIA NECESARIA O RECOMENDABLE:

Bibliografía Necesaria:

Sears, F.W., Zemansky, M.W., Young, H. D. & Freedman, R. A. (2009). Física Universitaria (vol. 1. 12a ed.). Naucalpan, Mx: Pearson Educación de México.

Bibliografía Recomendable:

- Feynman, R.P., Leighton, R., Sands, M. (2010). The Feynman Lectures on Physics New Millennium Edition. En: www.feynmanlectures.info. Pasadena, CA: California Institute of Technology.
- 2. Giancoli, D.C. (2008). Física para ciencias e ingeniería (Vol. 1. 4a ed.). Naucalpan, Mx: Pearson Educación de México.
- 3. Mataix, C. (2007). Mecánica de fluidos y maquinas hidráulicas (2a ed.).

NOMBRE DEL PLAN	LICENCIATURA EN INGENIERIA EN COMPUTACION Y TELECOMUNICACIONES	3/ 3
CLAVE 5121009	ONDAS, CALOR Y FLUIDOS	

México, DF: Alfaomega Grupo Editor.

- 4. Serway, R.A., & Jewett, J.W. (2015). Física para ciencias e ingeniería (Vol. 1. 9a ed.). México, DF: Cengage Learning Latinoamérica.
- 5. Tipler, P.A., & Mosca, G. (2010). Física para la ciencia y la tecnología (Vol.1. 6a ed.). Barcelona: Reverte.
- 6. https://bidi.uam.mx

