UNIDAD IZT	APALAPA	DIVISION	CIENCIAS	BIOLOGICAS	Y DE L	A SALUD	1 /
NOMBRE DEL P	LAN LICENO	CIATURA EN	BIOLOGIA				
CLAVE UNIDAD DE ENSEÑANZA-APRENDIZAJE CULTIVO DE TEJIDOS VEGETALES						CRED.	9
2312070					TIPO	OPT.	
H.TEOR. 3.0		gen a gray			TRIM.		
H.PRAC. 3.0	SERIACION RAC. 3.0 2312050				VI-XII		

OBJETIVO(S):

Objetivo General:

Al final de la UEA el alumnado será capaz de:

Reconocer e identificar los diversos tejidos y órganos de las plantas, conocer y aplicar las diferentes técnicas y métodos de cultivo in vitro para la propagación y multiplicación celular de los vegetales, así como la aplicación de éstas en la agroindustria y su producción comercial.

Objetivos Parciales:

Al final de la UEA el alumnado será capaz de:

- Conocer la importancia de la biotecnología vegetal y su aplicación.
- Conocer y aplicar diferentes técnicas y métodos de cultivo vegetal para obtener una multipropagación.
- Aplicar las técnicas del cultivo de tejidos para promover la conservación de germoplasma y la conservación de especies vegetales de importancia.
- Conocer la aplicación de técnicas del cultivo de tejidos para el mejoramiento de la producción agroindustrial, así como la resistencia a plagas y herbicidas.
- Aplicar los métodos y técnicas del cultivo vegetal en la producción comercial de especies de uso industrial y con importancia económica.

CONTENIDO SINTETICO:

- 1. Importancia de la biotecnología vegetal.
- 1.1. Fundamento de la técnica de cultivo de tejidos vegetales.
- 1.2. Historia de la biotecnología vegetal y su importancia.
- 2. Establecimiento de un laboratorio de cultivo de tejidos.
- 2.1. Importancia arquitectónica y comparación con el diseño de otros

Casa abierta al tiempo ADECUACION ARESENTADA AL COLEGIO ACADEMICO EN SU SESION NUM. 547 Norma Unidero Jope LA SECRETARIA DEL COLEGIO

CLAVE **2312070**

CULTIVO DE TEJIDOS VEGETALES

laboratorios.

- 2.2. Aparatos requeridos para el funcionamiento de un laboratorio de cultivo de tejidos.
- 3. Medios de cultivo.
- 3.1. Selección de medios de cultivo para tejidos y células vegetales.
- 3.2. Nutrición, humedad relativa, temperatura y fotoperiodo.
- 3.3. Iniciación y mantenimiento de los cultivos.
- 4. Fuente del explante y su manejo.
- 4.1. Tipos de explante.
- 4.2. Determinación del crecimiento. Análisis del medio.
- 4.3. Viabilidad y medidas adecuadas para el cultivo de tejidos.
- 4.4. Manipulación de la formación de brotes provenientes de explantes.
- 5. Técnicas del cultivo vegetal.
- 5.1. Cultivo de callos, meristemos apicales y células en suspensión.
- 5.2. Cultivo de órganos aislados.
- 5.3. Cultivo de protoplastos.
- 5.4. Fases de la micropropagación.
- 5.5. Embriogénesis somática.
- 5.6. Vitrificación.
- 6. Aplicación de estas técnicas.
- 6.1. Tolerancia al estrés ambiental
- 6.2. Resistencia a enfermedades, plagas y herbicidas.
- 6.3. Conservación de germoplasma.
- 6.4. Instrumento de la productividad.
- 6.5. Uso agroindustrial.
- 6.6. Uso comercial.

MODALIDADES DE CONDUCCION DEL PROCESO DE ENSEÑANZA-APRENDIZAJE:

Al inicio de la unidad de enseñanza-aprendizaje el profesorado presentará el contenido, las modalidades de conducción y los criterios de evaluación. El profesorado expondrá y discutirá con el alumnado los temas apoyados por medios audiovisuales. El alumnado leerá, presentará y discutirá artículos en temas seleccionados. Se consultarán materiales bibliográficos en medios electrónicos.

Esta Unidad de Enseñanza-Aprendizaje podrá impartirse en modalidad presencial, remota o mixta dependiendo de las condiciones que prevalezcan en el momento. Es recomendable que el profesorado se apoye en el uso de las TIC.

UNIVERSIDAD AUTONOMA METROPOLITANA

ADECUACION
PRESENTADA AL COLEGIO ACADEMICO
EN SU SESIONAJUM. 5,47

LA SECRETARIA DEL COLEGIO

CLAVE 2312070

CULTIVO DE TEJIDOS VEGETALES

MODALIDADES DE EVALUACION:

Evaluación Global:

Consistirá en un mínimo de dos evaluaciones teóricas y prácticas, cumplimiento de tareas, reporte de prácticas, presentación y discusión por el alumnado de materiales bibliográficos y elaboración de informe final. Los factores de ponderación se establecerán a criterio del profesorado.

Evaluación de Recuperación:

Incluirá una evaluación escrita de los contenidos teórico y práctico del programa y a juicio del profesorado podrá ser global o complementaria.

BIBLIOGRAFIA NECESARIA O RECOMENDABLE:

- 1. Arditti, J. 2008. Micropropagation of Orchids. 2a. Ed. Blackwell.
- 2. Ascon-Bieto, J. & Talon, M. 2008. Fundamentos De Fisiología Vegetal. Mcgrawhill. Interamericana.
- 3. Burraco, A. B. 2005. Avances Recientes en Biotecnología Vegetal e Ingeniería genética de Plantas. Barcelona España. Ed. Reverte.
- 4. Debergh, P.C. & Zimmerman, R.H. 1991. Micropropagation: Technology and Application. Kluwer Academic Publishers.
- 5. Dodds, J.H. & Roberts, L.W. 1982. Experiments in Plant Tissue Culture. Cambridge University Press. New York.
- 6. Gamborg, O.L. & Phillips, G.C. 1995. Plant Cell, Tissue, and Organ. Culture Springer-Verlag.
- 7. Gifford, E. M. & Foster, A. S. 1989. Morphology and Evolution of Vascular Plants. Freeman and Co. U.S.A.
- 8. George, E. F. 1993. Plant propagation by tissue culture: Part. The technology. Edington, Inglaterra. Exegetics Ltd.
- 9. George, E. F., Hall, M. A. & Geert-Jan, D.K. 2008. Plant propagation by tissue culture. Third edition. Vol.1. Springer Verlag.
- 10. Hopkins, W.G. & Hüner, N.P.A. 2004. Introduction to Plant Physiology. (3 ed). John Willey and Sons, Inc. U.S.A.
- 11. Kyte, 1. 1987. Plants from test tubes. An Introduction to Micropropagation. Timber Press. Portland, Oregon.
- 12. Laimer, M. & Rucker, W. 2003. Plant tissue culture, 100 years sin Gottlieb Haberlandt. Springer Verlag.
- 13. Lumsden, P.J., Nicolas J.R. & Dvies, W. J. 1994. Physiology, Growth and Development of Plants in Culture. Kluwer Academic Publishers.
- 14. Mauseth, J.D. 2009. Botany an Introduction to Plant Biology. (4a. Ed). UK. Jones and Bartlett Publishers.
- 15. Mohan, S. & Ishii, K. 2003. Micropropagation of Woody Trees and Fruits.

4/

CLAVE 2312070

CULTIVO DE TEJIDOS VEGETALES

Kluwer.

- 16. Mujib, A. & Samaj, J. 2006. Somatic embryogenesis. Springer Verlag.
- 17. Taiz, D. & Zieger, E. 2006. Plant Physiology. Sinauer Associates, Inc. Pub. U.S.A.
- 18. Torres, K.C. 1989. Tissue Culture Techniques for horticultural crops. Van Nostrand Reimbold. New York.
- 19. Thorpe. T. A. 1981. Plant Tissue Culture: Methods and aplications in agriculture. Academic Press. New York.
- 20. Vasil, I. K. 1989. Cell culture and somatic cell geneticas of plants. Academic Press. Orlando.
- 21. Vasil, I.K. & Thorpe, T. A. 1994. Plant Cell and Tissue Culture. Academic Press. New York.

