UNIDAD IZTAPALAPA		DIVISION	CIENCIAS	BIOLOGICAS	S Y DE 1	LA SALUD	1 / 4	
NOMBRE I	EL PLA	AN LICEN	CIATURA EN	BIOLOGIA				
CLAVE		UNIDAD DE ENSEÑANZA-APRENDIZAJE EVOLUCION				CRED.	8	
2312061		LVOLOGION			TIPO	OBL.		
H.TEOR.	4.0						TRIM.	
H.PRAC.	0.0	SERIACION					VI	

OBJETIVO(S):

Objetivo General:

Al final de la UEA el alumnado será capaz de:

Discutir y manejar los conceptos y principios fundamentales relativos a la teoría de la evolución.

Objetivos Parciales:

Al final de la UEA el alumnado será capaz de:

- Conocer los planeamientos filosóficos más importantes en el desarrollo de las ideas sobre la evolución.
- Conocer las disciplinas o áreas científicas que han contribuido al desarrollo de las ideas sobre la evolución o pensamiento evolutivo.
- Entender que el pensamiento evolutivo es una teoría, pero también es un conjunto de hechos.
- Discutir cuáles son los diversos enfoques que actualmente abordan el estudio de la evolución. Dado que la evolución es una teoría y un hecho.
- Entender que la materia prima con la que funciona la evolución es la variación genética.
- Analizar cuáles son las fuentes de variación genética, cómo están contenidas en las poblaciones y cómo se comportan en el espacio-tiempo.
- Entender cuáles son los mecanismos que favorecen el aislamiento entre poblaciones y promueven la formación de nuevas especies.
- Comprender el papel de factores bióticos y abióticos en la formación de nuevas especies.
- Revisar los diferentes enfoques que actualmente existen para el estudio de los procesos macroevolutivos.
- Entender las jerarquías evolutivas y sus interacciones en el proceso evolutivo.
- Comprender las tendencias evolutivas a gran escala.
- Entender cómo funcionan los mecanismos que promueven la evolución, así como las limitaciones de los modelos teóricos propuestos.

CLAVE **2312061**

EVOLUCION

CONTENIDO SINTETICO:

- 1. Contexto histórico del pensamiento evolutivo.
- 1.1. Concepto de evolución.
- 1.2. Polémicas evolutivas.
- 1.3. Lamarck y el transformismo.
- 1.4. Darwinismo.
- 1.5. Teoría Sintética de la evolución.
- 1.6. Evolución a partir de la Teoría Sintética.
- 2. La Evolución como teoría y hecho.
- 2.1. Evidencias de la evolución.
- 2.2. Evidencia empírica.
- 2.3. Evidencia experimental.
- 2.4. Método comparativo.
- 2.5. Caracteres homólogos.
- 2.6. Registro fósil.
- 3. Microevolución.
- 3.1. Fuentes de variación:
- 3.2. Recombinación.
- 3.3. Mutación.
- 3.4. Transferencia horizontal.
- 3.5. Análisis de la variación.
- 3.6. Tipos de marcadores.
- 3.7. Frecuencias alélicas y genotípicas.
- 3.8. Principio Hardy-Weinberg.
- 3.9. Fuerzas evolutivas.
- 3.10. Selección natural y mutación.
- 3.11. Migración y deriva génica.
- 3.12. Apareamiento no aleatorio.
- 4. Especiación.
- 4.1. Mecanismos de aislamiento reproductivo.
- 4.2. Ruptura de los mecanismos de aislamiento.
- 4.3. Modelos de especiación.
- 4.4. Especiación alopátrica.
- 4.5. Especiación simpátrica.
- 4.6. Especiación parapátrica.
- 5. Macroevolución. Origen de taxa superiores.
- 5.1. Biología evolutiva del desarrollo.
- 5.2. Gradualismo y equilibrio puntuado.
- 5.3. Radiación adaptativa.

Casa abierta al tiempo

orma

UNIVERSIDAD AUTONOMA METROPOLITANA

ADECUACION
RESENTADA AL COLEGIO ACADEMICO
EN SU SESIONAVIM 572

EN SU SESION NUM. 514

LA SECRETARIA DEL COLEGIO

NOMBRE	DEL PLAN	LICENCIATURA EN BIOLOGIA	3/4
CLAVE :	2312061	EVOLUCION	

5.4. Evolución en mosaico.

5.5. Tendencias evolutivas; convergencia y paralelismo.

5.6. Inferencia filogenética.

MODALIDADES DE CONDUCCION DEL PROCESO DE ENSEÑANZA-APRENDIZAJE:

Al inicio de la unidad de enseñanza-aprendizaje el profesorado presentará el contenido, las modalidades de conducción y los criterios de evaluación. El profesorado expondrá y discutirá con el alumnado los temas y podrá emplear medios como pizarrón y medios audiovisuales. El alumnado realizará investigaciones bibliográficas, ejercicios, discusión de artículos y presentación oral de temas.

Esta Unidad de Enseñanza-Aprendizaje podrá impartirse en modalidad presencial, remota o mixta dependiendo de las condiciones que prevalezcan en el momento. Es recomendable que el profesorado se apoye en el uso de las TIC.

MODALIDADES DE EVALUACION:

Evaluación Global:

Incluirá un mínimo de dos evaluaciones periódicas y, a juicio del profesorado, una evaluación terminal. Las primeras podrán realizarse a través de evaluación de ejercicios y exposiciones, entre otros. Los factores de ponderación serán a juicio del profesorado y se darán a conocer al inicio de la unidad de enseñanza-aprendizaje.

Evaluación de Recuperación:

Incluirá una evaluación escrita del contenido del programa y a juicio del profesorado podrá ser global o complementaria.

BIBLIOGRAFIA NECESARIA O RECOMENDABLE:

- 1. Baraona, A., Suárez, E. & Martínez, S. 2004. Filosofía e historia de la biología. Universidad Nacional Autónoma de México. México, D.F.
- 2. Bell, G. 1997. Selection. The mechanism of Evolution. Chapman & Hall. London, UK.
- 3. Brandon, R. N. 1996. Concepts and Methods in Evolutionary Biology. Cambridge University Press.
- 4. Eguiarte, L. E. 1999. Una guía para principiantes a la genética de poblaciones. En: Núñez-F, J. y Eguiarte. L. E. (comps). La Evolución

CLAVE 2312061

EVOLUCION

Biológica. Universidad Nacional Autónoma de México, México, D.F.

- 5. Eldredge, N. 1985. Síntesis inacabada: Jerarquías biológicas y pensamiento evolutivo moderno.
- 6. Eldredge, N.1989. Macroevolutionary Dynamics: species, niches, and adaptative peaks. McGraw-Hill. New York, NY, USA.
- 7. Freeman, S. & Herron, J. C. 2002. Análisis Evolutivo. 2a. Ed. Prentice Hall, NJ, USA.
- 8. Futuyma, D. J. 1998. Evolutionary Biology. 3a. Ed. Mass, Sinauer Assoc., Inc. Publ., Sunderland, MA, USA.
- 9. Futuyma, D.J. 2005. Evolution. Sinauer Associates, Sunderland, MA, USA.
- 10. Haldane, J.B.S. 1990. The Causes of Evolution. Princeton Science Library, Princeton, NJ, USA.
- 11. Hart, D.L. & Clark, A.G. 1989. Principles of population genetics. Sinauer Associates, Sunderland, MA, USA.
- 12. Hedrick, P.W. 2000. Genetics of population. Jones and Bartlett Publishers, MA, USA.
- 13. Holmes, R.S. & Lim, H.A. 1996. Gene Families: Structure, function, genetics, and evolution. World Scientific.
- 14. Ridley, M. (Ed). 1997. Evolution. Oxford Readers. Oxford Univ. Press. New York, NY, USA.
- 15. Mayr, E. 1976. Populations, species, and evolution. An abridgement of animal species and evolution. Belknap Press, Harvard Univ. Press. Cambridge, MA, USA.
- 16. Mayr, E. 1992. Una larga controversia: Darwin y el darwinismo. Drakontos, Barcelona, España.
- 17. Palazón, A.M. 2002. La construcción de la Biología. UNAM, México, D.F.
- 18. Ruiz, R. & Ayala, F. J. 2002. De Darwin al DNA y el origen de la humanidad: la evolución y sus polémicas. Fondo de Cultura Económica. Ediciones Científicas Universitarias. México, D.F.
- 19. Sarukhán, J. 2000. Las musas de Darwin, 3a. Ed. (Colección La Ciencia para Todos). Fondo de Cultura Económica, SEP, CONACYT, México, D.F.
- 20. Stanley, S.M. 1979. Macroevolution. Pattern and Process. W. H. Freeman, San Francisco, CA, USA.
- 21. Templado, J. 1982. Historia de las teorías evolucionistas. Ed. Alhambra, Buenos Aires, Argentina.

