UNIDAD IZTA	AD IZTAPALAPA DIVISION CIENCIAS BASICAS E					E:	INGENIERIA			1	L /	3	
NOMBRE DEL P	LAN LICENC	IATURA EN	QU	IMICA			•				•	_	
		ENSEÑANZA-APRENDIZAJE QUIMICA					CRED.			6			
2141132						TIPO			OPT.				
H.TEOR. 3.0 H.PRAC. 0.0	SERIACION 2141097		_						TRI VII	M. -XII			

OBJETIVO(S):

Objetivo General:

Que al final de la UEA el alumno sea capaz de:

Conocer y comprender las propiedades fisicoquímicas más importantes de las macromoléculas biológicas.

Objetivos Específicos:

Que al final de la UEA el alumno sea capaz de:

- Comprender las propiedades más relevantes, de tipo espectroscópico y de reactividad química, que despliegan las macromoléculas biológicas en solución acuosa.
- Reconocer los fundamentos físicos y químicos de las técnicas principales empleadas en el estudio experimental de proteínas y ácidos nucleicos.
- Aplicar las relaciones termodinámicas más usuales al fenómeno de plegamiento-desplegamiento estructural de las proteínas.

CONTENIDO SINTETICO:

- 1. Análisis estructural. Análisis de secuencias y alineamiento múltiple. Análisis estructural tridimensional usando programas para visualización y bancos de datos.
- 2. Propiedades fisicoquímicas de las proteínas en solución. Reactividad química y propiedades ópticas de las cadenas laterales de los aminoácidos. Equilibrios de ionización y propiedades hidrodinámicas.

UNIVERSIDAD AUTONOMA METROPOLITANA

APROBADO POR EL COLEGIO ACADEMICO EN SU SESION NUM. 343

EL SECRETARIO DEL COLEGIO

1/2

CLAVE **2141132**

BIOFISICOQUIMICA

- 3. Técnicas generales de caracterización de macromoléculas. Espectroscopía visible-ultravioleta e infrarrojo, fluorescencia, dicroísmo circular. Cromatografía líquida de alta resolución, electroforesis, espectrometría de masas. Calorimetría diferencial de barrido y calorimetría isotérmica de titulación.
- 4. Estabilidad estructural de las proteínas. Desplegamiento de las proteínas. Estados nativo (N) y desplegado (U). Criterios de reversibilidad y equilibrio. Mecanismo de la transición N-U; estados intermediarios. Efecto de la temperatura y de agentes químicos en el equilibrio N-U. Determinación de los cambios en las funciones termodinámicas más importantes; interpretación en términos del balance entre interacciones no covalentes, efectos del solvente y entropía conformacional: factores estructurales que determinan la estabilidad. Relación entre cinética y equilibrio.
- 5. Interacciones intermoleculares en la formación de complejos proteína-ligando. Termodinámica del proceso de formación de complejos multimoleculares; interacciones electrostáticas: pares iónicos y puentes de hidrógeno; fuerzas de van der Waals. Unión de ligandos pequeños (inhibidores o activadores); unión de iones hidrógeno; interacciones proteína-ácido nucleico.

MODALIDADES DE CONDUCCION DEL PROCESO DE ENSEÑANZA-APRENDIZAJE:

- 1. Clase de teoría en forma de conferencia magistral.
- 2. Sesiones de taller de visualización y análisis estructural de proteínas.

MODALIDADES DE EVALUACION:

Evaluación Global:

- Se considerarán las siguientes actividades, ponderadas a juicio del profesor:
- Evaluaciones periódicas (al menos tres procurando que sean de carácter acumulativo o integrador).
- Tareas periódicas (al menos tres).
- Seminarios impartidos por los alumnos.

UNIVERSIDAD AUTONOMA METROPOLITANA

APROBADO POR EL COLEGIO ACADEMICO EN SU SESION NUM.

EL SECRETARIO DEL COLEGIO

1/2

3/3

CLAVE **2141132**

BIOFISICOQUIMICA

Evaluación de Recuperación:

- El curso puede ser aprobado mediante la aplicación de una evaluación de recuperación.

BIBLIOGRAFIA NECESARIA O RECOMENDABLE:

- 1. Creighton, T. E., Proteins. Structures and molecular Properties, 2nd ed. W. H. Freeman, New York, USA 1993.
- 2. Van Holde, K. E., W. C. Johnson, P. S. Ho, Principles of Physical Biochemistry, Prentice Hall, New Jersey, USA 1998.
- Serdyuk, I. N., Zaccai, N. R., Zaccai, J., Methods in Molecular Biophysics. Structure, Dynamics, Function. Cambridge University Press, Cambridge, U.K., 2007.
- 4. Cantor, R., Schimmel, P. R., Biophysical Chemistry, vol. 1-3. W. H. Freeman, San Francisco, CA, USA, 1980.

UNIVERSIDAD AUTONOMA METROPOLITANA

APROBADO POR EL COLEGIO ACADEMICO EN SU SESION NUM. ____343

EL SECRETARIO DEL COLEGIO

a/200