UNIDAD IZT	APALAPA	DIVISION CIENCIAS BASICAS E	INGENIERIA	1 / 3
NOMBRE DEL P	LAN LICENC	IATURA EN INGENIERIA BIOMEDICA		
		ENSEÑANZA-APRENDIZAJE S DIFERENCIALES ORDINARIAS I	CRED.	9
2131091	ECOACIONE	SERIACION 2130040		OBL.
H.TEOR. 3.0				
H.PRAC. 3.0				V

OBJETIVO(S):

Objetivos Generales:

Al final de la UEA el alumnado será capaz de:

- Reconocer y hallar las soluciones de algunos tipos de ecuaciones diferenciales ordinarias de primer orden.
- Identificar algunos problemas donde aparecen ecuaciones diferenciales.
- Resolver ecuaciones diferenciales ordinarias lineales de segundo orden.
- Entender por qué algunas ecuaciones diferenciales no son integrables por cuadraturas con algunos ejemplos.
- Obtener información cualitativa de una ecuación sin requerir resolverla.
- Resolver numéricamente ecuaciones diferenciales ordinarias, usando por ejemplo el método de Euler.

CONTENIDO SINTETICO:

- 1. Ecuaciones diferenciales ordinarias de primer orden. (2 semanas)
- 1.1. Motivación: modelado y clasificación de ecuaciones diferenciales (ordinarias y parciales, autónomas y no autónomas, lineales y no lineales). Orden de una ecuación. Concepto de solución, su existencia y unicidad. Relación entre orden y el número de parámetros del conjunto de soluciones.
- 1.2. Ecuaciones diferenciales ordinarias separables, homogéneas, lineales, exactas y factores integrantes.
- 1.3. Algunas ecuaciones que se reducen a lineales: la ecuación de Bernoulli.
- 1.4. Ecuaciones lineales con segundo miembro discontinuo.
- 1.5. Aplicaciones: dinámica de poblaciones, decaimiento radioactivo, circuitos RL o RC, y reacciones químicas de primer orden.
- 2. Ecuaciones diferenciales ordinarias lineales de segundo orden. (3 semanas)
- 2.1. Ecuaciones lineales homogéneas de segundo orden. Ecuaciones con

Casa abierta al tiempo

ADECUACION

PRESENTADA AL COLEGIO ACADEMICO
EN SU SESION NUM. 564

LA SECRETARIA DEL COLEGIO

LA SECRETARIA DEL COLEGIO

CLAVE **2131091**

ECUACIONES DIFERENCIALES ORDINARIAS I

coeficientes variables. Independencia lineal. Definición de Wronskiano.

- 2.2. Ecuaciones lineales homogéneas con coeficientes constantes. Polinomio característico. Raíces simples y dobles, reales y complejas. La ecuación de Euler.
- 2.3. Reducción de orden. Caso no homogéneo. Métodos para hallar soluciones particulares: a) coeficientes indeterminados, y b) variación de parámetros.
- 2.4. Oscilaciones lineales, amortiguadas, forzadas y resonancia. Curvas de Lissajous.
- 2.5. Aplicaciones: Sistemas análogos sistema resorte-masa y circuitos RLC.
- 2.6. Ecuaciones lineales homogéneas de orden n con coeficientes constantes.
- 3. La transformada de Laplace. (3 semanas)
- 3.1. Funciones exponencialmente acotadas y definición de la transformada de Laplace.
- 3.2. Propiedades. La fórmula de convolución.
- 3.3. Transformada inversa, descomposición en fracciones parciales y el uso de tablas.
- 3.4. Funciones de transferencia.
- 3.5. Aplicación a la solución de ecuaciones lineales con segundo miembro discontinuo. La delta de Dirac.
- 4. Técnicas para ecuaciones diferenciales no integrables. (3 semanas)
- 4.1. Integrabilidad de ecuaciones diferenciales ordinarias. Algunas ecuaciones especiales: las ecuaciones de Ricatti y Clairaut.
- 4.2. Isoclinas y el Teorema de existencia y unicidad.
- 4.3. Integración numérica de Euler.

MODALIDADES DE CONDUCCION DEL PROCESO DE ENSEÑANZA-APRENDIZAJE:

Se recomienda motivar los conceptos y métodos a partir de ejemplos sencillos de ecuaciones diferenciales ordinarias, elevando paulatinamente el grado de dificultad de los mismos.

Para las proposiciones requeridas se recomienda motivarlas adecuadamente, esbozando su demostración y enfatizando las ideas involucradas.

Se sugiere asignar tareas semanales.

El personal académico podrá apoyarse en plataformas digitales para llevar a cabo las actividades descritas. Tanto el personal académico como el alumnado deberán usar medios electrónicos institucionales para dichas actividades.

La UEA se podrá impartir de manera presencial, remota o mixta entre otras; la modalidad remota o mixta puede incluir sesiones tanto sincrónicas como

CLAVE **2131091**

ECUACIONES DIFERENCIALES ORDINARIAS I

asincrónicas. La modalidad de impartición será determinada por el Consejo Divisional al aprobar la programación anual de la UEA, y se hará del conocimiento del personal académico y del alumnado antes de que inicie el trimestre.

En las sesiones se promoverá un ambiente de aprendizaje libre de manifestaciones de violencia y discriminación que reconozca y respete los derechos del alumnado.

MODALIDADES DE EVALUACION:

Evaluación Global:

Se deberán aplicar al menos dos evaluaciones periódicas y una evaluación terminal. Cuando las evaluaciones periódicas sean suficientes para evaluar al alumno, el profesor, si así lo decide, podrá eximirlo de la evaluación terminal. Los factores de ponderación serán a criterio del profesor.

Evaluación de Recuperación:

A juicio del profesor, consistirá en una evaluación que incluya todos los contenidos teóricos y prácticos de la UEA.

BIBLIOGRAFIA NECESARIA O RECOMENDABLE:

- 1. Boyce, W., di Prima, R., Ecuaciones Diferenciales y Problemas con Valores en la Frontera, Ed. Limusa, 2005.
- 2. Edwards, H., Penney, D., Ecuaciones Diferenciales y Problemas con Valores en la Frontera, 4a. Ed. Pearson, 2009.
- 3. Marcellán, J. F., Casasús, L., Zarso, A., Ecuaciones Diferenciales. Problemas Lineales y Aplicaciones, Ed. Mc Graw Hill, 1990.
- 4. Melsa, J., Schultz, D., Linear Control Systems, Ed. Mc Graw Hill, 1969.
- 5. Tagle, R., Saff, E., Zinder, A., Ecuaciones Diferenciales y Problemas con Valores en la Frontera, Ed. Pearson, 2001.
- 6. Zill, D., Ecuaciones Diferenciales con Aplicaciones de Modelado, Ed. Progreso/Cengage Learning, 2009.
- 7. Zill, D., Cullen R., M., Ecuaciones Diferenciales con Problemas con Valores en la Frontera, Ed. Progreso/Cengage Learning, 2009.

