JNIDAD CUAJIMALPA		DIVISION CIENCIAS NATURALES	E INGE	ENIERIA	1 / 3
NOMBRE DEL PI	LAN LICENC	IATURA EN INGENIERIA EN COMPU	JTACION		<u> </u>
CLAVE	UNIDAD DE ENSEÑANZA-APRENDIZAJE			CRED.	8
460037	VISUALIZACION Y GRAFICACION			TIPO	OPT.
H.TEOR. 3.0	SERIACION			TRIM.	
H.PRAC. 2.0	AUTORIZAC	ION			

OBJETIVO(S):

Objetivos Generales:

Oue al final del curso el alumno sea capaz de:

 Manejar las técnicas de transformación de datos multidimensionales para la creación de graficas y animaciones por computadora para su interpretación y visualización.

2. Aplicar las técnicas de la creación digital de gráficas y animación por computadora para aplicaciones científicas.

CONTENIDO SINTETICO:

- 1. Introducción a la graficación por computadora y panorama del software de visualización científica.
- 2. Los espacios estáticos y en el tiempo plano-color, volumen-color. El problema de proyección de datos multidimensionales. Representaciones de grandes cantidades de datos por gráficas interactivas.
- 3. La proyección de datos y los problemas de diseño de la Interfaz gráfica.
 Análisis de Componentes Principales para el diseño de espacios de representación de dimensión finita de espacios de alta dimensión. Filtros y transformada de Fourier y Wavelets.
- 4. Modelado de escenas. Geometría 3D, cámara, modelos proyectivos:
 Ortográfico y perspectivo. Modelos de objetos gráficos (puntos, líneas,
 caras, texturas, color, materiales). Iluminación. Escenas: objetos,
 cámaras, fondo, iluminación. Movimientos y transformaciones en 3D.

Casa abierta al tiempo

UNIVERSIDAD AUTONOMA METROPOLITANA

APROBADO POR EL COLEGIO ACADEMICO EN SU SESION NUM. __3/5

EL SECRETARIO DEL COLEGIO

MODALIDADES DE CONDUCCION DEL PROCESO ENSEÑANZA-APRENDIZAJE:

- Clases teórico-prácticas a cargo del profesor con participación activa del alumno.
- Clase teórica en aula.
- Exposiciones temáticas por parte del profesor con discusiones grupales y reportes de trabajo.
- Promover la creatividad del alumno para desarrollar visualizaciones y aprovechar las ventajas de la experimentación y modelación gráfica por computadora.
- Clase práctica en laboratorio.
- Trabajar por problemas en donde el profesor conduce el proceso y los alumnos participan activamente, utilizando y combinando las herramientas adecuadas con el software adecuado a los problemas.
- Se sugiere el uso de software libre.
- Se recomienda que se presenten reportes de trabajo por equipo de una serie de problemas donde el volumen de datos o su alta dimensionalidad despierten la creatividad de los alumnos para una visualización adecuada.

MODALIDADES DE EVALUACION:

Evaluación Global:

Se ponderarán las siguientes actividades a criterio del profesor:

- Tareas individuales de investigación y mini proyectos de programación.
- Evaluaciones periódicas.
- Participación en los procesos de argumentación de equipo y grupo.
- Evaluación terminal.

Evaluación de Recuperación:

- El alumno deberá presentar una evaluación crítica que contemple todos los contenidos de la unidad de enseñanza-aprendizaje.
- No requiere inscripción previa a la UEA.

BIBLIOGRAFIA NECESARIA O RECOMENDABLE:

 Newman, W. M. y Sproull, R. F., Principles of interactive computer; graphics; McGraw Hill, México, 1981.

Casa abierta al tiempo.

APROBADO PIDE EL COLEGIO ACADEMICO
EN SUPESION NUM. 3/5

EL SECRETARIO DEL COLEGIO

CLAVE 460037

VISUALIZACION Y GRAFICACION

- Rogers, D. F., Procedural element for computer graphics; McGraw Hill, USA, 1985.
- Rogers, D. F. y Adams, J. A., Mathematical elements for computer graphics;
 2a. Ed., McGraw Hill, México, 1990.
- 4. Shirley, P., Fundamentals of computer graphics; Hardcover, USA, 2005.
- 5. The Essential Blender, Blender Foundation, USA, 2008.
- 6. Watt, A., Fundamentals of three-dimensional computer graphics; Addison-Wesley, Inglaterra, 1989.
- 7. Wright, R. y Sweet, M. l, OpenGL SuperBible; Waite Group Press, USA, 2000.

Casa abierta al tiempo

UNIVERSIDAD AUTONOMA METROPOLITANA

APROBADO PORIEL COLEGIO ACADEMICO

EL SECRETARIO DEL COLEGIO